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Abstract
The origin of relaxing collective modes in liquid semimetallic Bi is studied
within the generalized collective modes approach. It is found that the lowest
kinetic relaxing mode strongly affects the shape of the density–density time
correlation functions beyond the hydrodynamic region and determines specific
de Gennes features slowing the density fluctuations near the main peak of the
structure factor. It is shown that this kinetic relaxing mode appears due to
structural relaxation in a liquid. Contributions of different collective modes to
the shape of the density–density time correlation functions are studied in detail.

1. Introduction

In our recent study of collective excitations in liquid semimetallic Bi [1] (we will refer to this
paper as paper I) at n = 0.0289 Å−3 and T = 578 K it was shown that

(i) the density–density time correlation functions (TCFs) obtained in our MD simulations
were reproduced perfectly over a wide range of wavenumbers k within the nine-variable
approximation of the generalized collective modes (GCM) approach;

(ii) there are three branches of propagating collective excitations in the spectrum for wave-
numbers k up to 3 Å−1.

The many-variable GCM approach allows one to take into account short-time processes of
structural and thermal origin of higher order than hydrodynamic ones. Two branches among
the generalized propagating modes were associated [1] with the viscoelastic properties of
liquid Bi (generalized sound modes and high-frequency kinetic ones), and one branch has
been identified as high-frequency heat waves. We have also found three generalized relaxing
collective modes with purely real eigenvalues, the origin of which, however, was not completely
established. It was only accepted that the lowest relaxing mode, which behaved asDT k2 in the
hydrodynamic region withDT being the thermodiffusion coefficient [2,3], could be considered
throughout the whole k-range studied as the generalized thermodiffusive mode. In paper I it
has also been established that the relative contribution from this lowest relaxing mode to
the density–density time correlation function increases and even becomes dominant for large
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enough wavenumbers, so the question arises of what kinds of physical process beyond the
hydrodynamic region result from the purely relaxing modes obtained.

Another interesting point to investigate is the k-dependence of the amplitudes of the mode
contributions to the density–density TCFs beyond the hydrodynamic region. For pure liquids
only the hydrodynamic behaviour of the amplitudes for thermodiffusive and propagating sound
modes is well known [4]. Thus, in the case of a nine-variable treatment a study of separate
mode contributions from generalized hydrodynamic and kinetic modes to TCFs would be of
great interest.

The method of GCM and the scheme of our analysis presented in this report are quite
general and can be applied to any pure or complex liquid. The results obtained in this study
are similar to those obtained recently by us for liquid Pb [5], liquid Cs [6] and Lennard-Jones
liquids [7]. The main focus in this report is not the specific features of liquid bismuth, but the
origin of the relaxational behaviour in a pure liquid beyond the hydrodynamic region. More
general comparison of relaxational behaviours in pure metallic, semimetallic and Lennard-
Jones liquids as well as binary mixtures will be presented elsewhere.

The goals of this report are:

(i) to complete the study of generalized collective modes in semimetallic Bi by establishing
the origins of all of the relaxing modes found in paper I;

(ii) to study the amplitudes of separate mode contributions to the density–density TCF and
on this basis to estimate the most important mode contributions for different ranges of
wavenumbers k.

2. Results and discussion

2.1. The origin of relaxational behaviour in liquid bismuth beyond the hydrodynamic region

For the details of the theoretical method used in our calculations on liquid Bi, we refer the
reader to paper I. We simply state that for the study of long- and short-time processes in the
liquid we use a basis set of nine dynamical variables [8, 9]:

A(9)(k, t) =
{
n(k, t), Jl(k, t), e(k, t), J̇l(k, t), ė(k, t), J̈l(k, t), ë(k, t),

...

Jl(k, t),
...
e(k, t)

}
(1)

where the microscopic operators n(k, t), Jl(k, t) and e(k, t) are the hydrodynamic densities
of particle number, momentum and energy, respectively. In (1) the dots denote the orders of
the time derivatives for the relevant operator. The basis set (1) is applied to generate the 9 × 9
eigenvalue problem for the generalized hydrodynamic matrix T(k) [10]. In the case of liquid
Bi [1] we found within the nine-variable set (1) three pairs of complex-conjugate eigenvalues
(propagating modes) and three purely real ones (relaxing modes) in the k-region k < 3 Å−1

(see figure 5 in paper I). To distinguish between the propagating and relaxing collective modes
we will identify the purely real eigenvalues as di(k) with the italic subscript i = 1, 2, 3 and
the complex eigenvalues as

zα(k) = ±iωα(k) + σα(k) (2)

with the Greek subscript α = 1, 2, 3, where ωα(k) and σα(k) denote the dispersions and
damping coefficients of propagating excitations, respectively.

In figure 1 the results for all of the generalized relaxing modes, obtained within the
nine-variable treatment (1), are shown. In the hydrodynamic range of wavenumbers the
thermodiffusive mode d1(k) (see figure 1) is proportional to k2, in complete agreement
with the predictions of the hydrodynamic theory [2, 3]. The other two relaxing modes are
kinetic ones and tend to nonzero values when k → 0. Therefore, they describe mainly
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Figure 1. Three relaxing collective modes di(k) obtained for the nine-variable basis set (1). As a
guide to the eye, solid lines show the spline interpolation.

the short-time behaviour and cannot contribute substantially to dynamical processes in the
hydrodynamic region, so the leading contribution from the relaxing modes is expected to
be from the generalized thermodiffusive mode d1(k) when k is small. It is seen in figure 1
that appropriate classification of the eigenvalues obtained is a rather complicated problem
(especially at intermediate values of k, where the two lowest relaxing modes overlap) and
needs an additional analysis. Only in such a way can the correct k-dependence (and the
correct physical understanding) of the corresponding damping coefficients be established. We
note in this context that in paper I the relaxing mode identified as zR

1 was associated with the
lowest purely real eigenvalue for the whole k-region.

To classify the purely real eigenvalues obtained in a correct way and to establish the
physical origin of each branch, we apply the same scheme as was used in paper I for the
study of generalized propagating modes. The main idea is the following: we split the set of
dynamical variables (1) into two separate subsets:

A(4h)(k, t) =
{
h(k, t), ḣ(k, t), ḧ(k, t),

...

h(k, t)
}

(3)

and

A(5)(k, t) =
{
n(k, t), Jl(k, t), J̇l(k, t), J̈l(k, t),

...

Jl(k, t)
}

(4)

which describe by definition the dynamic properties arising from thermal and viscoelastic
processes, respectively. Note that the dynamical variable h(k, t) in (3) is the heat-density
operator defined in paper I. Thus, the collective mode spectra can be recalculated for the
separated subsets A(4h) and A(5), providing us with additional information about the ‘bare’
(or ‘uncoupled’) collective modes. This also allows one to assess the role and strength of
coupling, by comparing the spectra obtained for the total set A(9) and the separate subsets (3)
and (4). Such analysis was used previously in our study of the transverse dynamics in binary
liquids [11, 12].

In figure 2 we compare the results for the generalized thermodiffusive mode d1(k) obtained
for two different sets of dynamical variables: the basic nine-variable set A(9)(k, t), which takes
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Figure 2. The generalized thermodiffusive collective moded1(k)obtained for two sets of dynamical
variables: the ‘coupled’ nine-variable set (1) (crosses); and the four-variable subset (3) (spline-
interpolated solid line).

into account coupling between thermal and viscous processes (crosses in figure 2); and the four-
variable subset A(4h)(k, t). One can see rather good agreement between the lowest thermal
relaxing mode (solid line), obtained for the subset A(4h)(k, t), and the purely real eigenvalue
d1(k) (crosses) found within the nine-variable treatment (1). Note that for intermediate and
large wavenumbers, k > 0.55 Å−1, the eigenvalue d1(k) is no longer (see figure 1) the lowest
relaxing mode in the nine-mode spectrum.

Another purely real eigenvalue, obtained for the separated subset A(4h)(k, t), correlates
well with the generalized kinetic relaxing mode d3(k) shown in figure 1. Thus, two relaxing
collective modes d1(k) and d3(k), obtained for the ‘coupled’ nine-variable set A(9)(k, t), are
caused mainly by thermal processes. Due to strong damping, the relaxing collective mode
d3(k) can contribute only marginally to the dynamical properties of a liquid considered. Thus,
the relaxational behaviour of time correlation functions is mainly determined by the generalized
thermodiffusive mode d1(k) as well as the generalized kinetic relaxing excitation d2(k).

In figure 3 the purely real eigenvalues d2(k)of the nine-mode spectrum (crosses) are plotted
together with the only relaxing mode (solid line) obtained for the separated ‘viscoelastic’ five-
variable subset A(5)(k, t). It is seen that for k > 1 Å−1 the kinetic mode d2(k) is perfectly
reproduced within the viscoelastic treatment. It is worth mentioning that the generalized mode
approach used for the subset A(5)(k, t) does indeed give the higher-order version of viscoelastic
theory [2, 3, 13, 14]. Note that no adjustable parameters are used in this version.

One can conclude from figure 3 that the viscoelastic approximation in the case of Bi
does not work well in the range of small wavenumbers, for k < 1 Å−1, where the coupling
with the thermal processes becomes very important. When the thermal fluctuations are taken
into account the coupling results in a pushing upwards of the eigenvalue d2(k) (crosses in
figure 3) from the ‘bare’ relaxing mode, obtained in the viscoelastic approximation (solid line
in figure 3).

In order to clarify further the physical meaning of the kinetic relaxing mode d2(k), we
consider also the k-dependence of an eigenvalue:

d0(k) = τ−1
nn (k) (5)
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Figure 3. The kinetic relaxing collective mode d2(k) obtained for three sets of dynamical variables:
the ‘coupled’ nine-variable set (1) (crosses); the five-variable subset (4) (spline-interpolated solid
line); and the single-variable set A(1) (spline-interpolated dashed line).

which can be found within the simplest one-variable GCM theory for the density operator
alone:

A(1)(k, t) = {n(k, t)} . (6)

The eigenvalue d0(k) gives additional information about the slowest density fluctuations in a
liquid. In equation (5) the function τnn(k) is the generalized correlation time associated with
the density–density TCF (see paper I). Qualitatively, the relaxing eigenvalues obtained for the
five-variable subset A(5)(k, t) and for the single-variable treatment (dashed line in figure 3)
show behaviours that are nearly the same. In the region of wavenumbers 1.5 Å−1 < k < 3 Å−1

the single-variable mode is very close to the kinetic relaxing mode d2(k). This implies that in
the region of the main peak of the static structure factor k ∼ Qp there is rather good separation
of long- and short-time dynamical processes, represented by the relaxing mode d2(k) and
propagating acoustic excitations, respectively.

The origin of the kinetic relaxing mode can be clearly established by taking into account
that within the one-variable treatment the method of GCM leads to a single-exponential form
for the density–density time correlation function:

F 1
nn(k, t) = G1

nn(k) exp{−d0(k)t}
which follows from equation (10) of paper I for the case of basis set A(1)(k, t). Making use
of equation (5) and the lowest sum rule, one gets

F 1
nn(k, t) = S(k) exp{−t/τnn(k)}. (7)

One can see from (7) that within such a one-variable treatment, τnn(k) is a specific relaxation
time and, in particular, for k = Qp it has the meaning of the lifetime of a particle in a cage
of nearest neighbours. This implies that the kinetic relaxing mode d2(k) is connected with
structural relaxation in a liquid, and, in particular, with the effect of cage diffusion [15].

2.2. Mode contributions to the density–density TCF

In the hydrodynamic region, three generalized hydrodynamic modes, z±1 and d1(k) (see figure 5
in paper I), are well separated from the kinetic ones. In particular, this explains why the
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hydrodynamic result [4] for the density–density TCF works perfectly for small k. In order to
see how the hydrodynamic picture of mode contributions [4] changes on increasing k and to
study in more detail the crossover to relaxational behaviour of the TCF at large k-values, let
us consider now the separate mode contributions to the shape of the density–density TCF in
the nine-variable theory. In this case the density–density TCF can be expressed as a weighted
sum of nine terms [11]:

F 9
nn(k, t) =

3∑
i=1

Ainn(k)e
−di (k)t +

3∑
α=1

{
Bαnn(k) cos[ωα(k)t] + Cαnn(k) sin[ωα(k)t]

}
e−σα(k)t (8)

where the amplitudes Ainn, B
α
nn and Cαnn are functions of k and are defined via eigenvectors

associated with relevant eigenvalues. The first three terms on the right-hand side of equation (8)
describe the contributions from the relaxing modes di(k), and the last six terms are connected
with the generalized propagating modes (2). We will call terms with amplitudes Bαnn and Cαnn,
caused by the propagating modes, symmetric and asymmetric ones, respectively. Obviously,
for t = 0 one has

F 9
nn(k, 0) =

3∑
i=1

Ainn(k) +
3∑
α=1

Bαnn(k) ≡ S(k). (9)

The dynamical structure factor can be calculated in an analytical form by taking the Fourier
transform of (8). This results in: three central Lorentzians at ω = 0 (contributions from
the relaxing modes); six Lorentzians (symmetric contributions) located at nonzero frequencies
±ωα(k), determined by the dispersions of propagating modes (see (2)); and six non-Lorentzian
corrections originating from the asymmetric contributions in (8). The latter reduce in the
hydrodynamic limit to two anti-Stokes components, known from the standard hydrodynamic
theory [2, 3].

We plot in figure 4, according to equation (9), two main contributions to the static structure
factor S(k) of liquid Bi. In this figure the static structure factor S(k), obtained via Fourier
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Figure 4. Contributions from the relaxing collective mode d2(k) (spline-interpolated dashed
line) and generalized sound excitations (spline-interpolated solid line) to the zero-order frequency
moment of S(k, ω), found in MD. The static structure factor S(k) obtained via the MD-derived
pair correlation function is shown by crosses.
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transformation of the MD-derived pair correlation function, is also shown by crosses. One
can see that in the range k ∼ Qp two kinds of process mainly determine the shape of S(k)
(all of the other contributions are negligible on the scale used). They are formed by the long-
time decay from the structural relaxation term (the collective mode d2(k), dashed line) and
the shorter-timescale density fluctuations related to the acoustic-like excitations (solid line).
Note that the relative contribution from d2(k) is almost six times bigger than the one from
generalized acoustic excitations.

More precise information about the relative mode contributions can be obtained by
considering the k-dependence of the normalized amplitudes, defined by the function
Fnn(k, t)/S(k). In this case, equation (8) can be rewritten in the form

3∑
i=1

Āinn(k) +
3∑
α=1

B̄αnn(k) = 1

where the normalized amplitudes are defined as follows:

M̄gnn(k) = Mgnn(k)/S(k) M = {A,B,C} g = {i, α}.
The results of our calculations for the normalized amplitudes are presented in figure 5.
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Figure 5. Normalized amplitudes of mode contributions to the ‘density–density’ time correlation
function: relaxing modes d1 (asterisks) and d2 (closed boxes), generalized acoustic excitations
z1 (symmetric term: open circles; asymmetric one: closed circles), heat waves z2 (symmetric
amplitudes: open triangles). As a guide to the eye, the normalized amplitudes of relaxing and
propagating modes are connected by spline-interpolated dashed and solid lines, respectively.

One can see in figure 5 that for small wavenumbers (k < 0.5 Å−1) the leading contributions
to the function Fnn(k, t)/S(k) are connected with the generalized hydrodynamic collective
modes. When k → 0, there remain only two finite contributions to the density–density TCF:

(i) the normalized symmetric amplitude B̄1
nn(k) of the generalized sound excitations (open

circles) tends to the value 1/γ with γ ≈ 1.12, as estimated in paper I;
(ii) the normalized amplitude Ā1

nn(k) of the generalized thermodiffusive mode (asterisks)
tends to 1 − 1/γ .
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Such a behaviour is in complete agreement with the predictions of standard hydrodynamics
[2,3,16]. It is also known from the literature [2–4,16] that the asymmetric contribution C̄1

nn(k)

from the generalized sound excitations has to be a linear function of k and vanish when k goes
to zero. The k-dependence of C̄1

nn(k) is shown in figure 5 by closed circles, and it is seen that
this function has an evident tendency to linear behaviour in the small-k region (k < 0.3 Å−1).
Note that according to (9) the asymmetric contributions are irrelevant for the zero-frequency
moment of the dynamical structure factor S(k, ω), but they are very important for the correct
reproduction of higher-order frequency moments. For small wavenumbers k the contribution
C̄1
nn(k) results in asymmetry of the Brillouin peaks.

It is seen in figure 5 that the generalized thermodiffusive mode d1(k) contributes
substantially only when k is small enough. For intermediate and large wavenumbers
(k > 0.6 Å−1) this mode has no effect on the density fluctuations. Instead, the role of the
relaxing kinetic mode d2(k) increases when k becomes larger, and this mode, together with
the generalized sound excitations, in fact determines the shape of the function Fnn(k, t) for the
intermediate and large k-values considered. So, the approximate formula

Ā2
nn(k) ≈ 1 − B̄1

nn(k)

for the mode contributions may be used herein (see figure 5). In particular, this explains why
such a good agreement between the results obtained for the ‘coupled’ set (1) and the five-
variable viscoelastic set (4) was found (see figure 3) in that region. In fact, for k > 0.6 Å−1

the viscoelastic theory must work fairly well because the coupling with the heat fluctuations
is negligible. This conclusion is supported by the numerical results found for the contribution
B̄2
nn(k) of the heat waves (triangles in figure 5), which in the cases of solids [17] and liquid

He [18] are also called the second-sound excitations, to the function Fnn(k, t)/S(k). For the
case of liquid Bi this contribution of heat waves is negligible, but for some liquids it may play
a significant role by manifesting itself as a fast-sound-like phenomenon [19, 20].

3. Conclusions

Let us summarize the results obtained in this study for the generalized relaxing kinetic mode
d2(k). We found that:

(i) The relaxing behaviour of Fnn(k, t) in the region of the main peak of S(k) is mainly
determined by a single-mode contribution associated with d2(k), and this does indeed give
the main mechanism of a dramatic slowing down of the decay of the density fluctuations,
which results in so-called ‘de Gennes narrowing’ in the dynamical structure factor [21].

(ii) The kinetic relaxing mode d2(k) in the region of the main peak of S(k) is determined
entirely by viscoelastic processes, and the thermal processes have no effects therein.
Moreover, the eigenvalue d2(k) is well reproduced for k ∼ Qp even within the simplest
one-mode approximation (6).

(iii) In the hydrodynamic range the damping coefficient of the kinetic mode d2(k) tends to
a nonzero value, and its contribution to the density–density time correlation function
Fnn(k, t) becomes negligible (proportional to k2; see the closed squares in figure 5).
However, we point out that the role of the relaxing kinetic mode d2(k) increases
substantially when k becomes larger, and the sharp increasing of the amplitude Ā2

nn(k)

as well as the rapid decreasing of Ā1
nn(k) in the range k ∼ 0.6 Å−1 can be considered as

manifestations of the dynamic crossover from purely viscous to purely elastic behaviour [2]
in liquid Bi.

Our recent results [5, 6], obtained for the liquid metals Cs and Pb, show obviously that
beyond the small-k region the relaxing mode d2(k) is the lowest one and makes the main
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contribution to the shape of the density–density TCF for intermediate and large wavenumbers.
This allows us to assume that for highly viscous fluids the contribution from the generalized
relaxing kinetic mode d2(k)must be observed in the dynamical structure factor even for rather
small wavenumbers. This assumption needs further investigation and will be the subject of
our next study, but we would like to stress that slightly beyond the hydrodynamic region
the contribution from the relaxing mode d2(k) to the dynamical structure factor gives in fact
a Mountain-like peak caused by the structural relaxation effects [2], which are typical for
highly viscous fluids. Taking into account all of the facts collected above, we conclude that
the relaxing kinetic mode d2(k) is connected with the decay of an instantaneous cage of
neighbours and describes the main features of structural relaxation in a liquid. Note that in
the one-variable treatment, 1/d2(Qp) ∼ τnn(Qp) has the meaning of a particle’s lifetime in
the cage of nearest neighbours. Therefore, one can identify the kinetic eigenvalue d2(k) as
the generalized structural relaxation mode. We note also that the results obtained allow us to
state that the main distinction as regards the collective dynamics between semimetallic liquid
Bi and the previously studied liquid metals [2,16], with well-defined sound excitations visible
in the dynamical structure factor up to k ∼ 0.7Qp, is not the strong damping of sound modes
(as was concluded, e.g., in [22]) but rather their small relative contribution in comparison with
that from the generalized structural relaxation mode d2(k). In particular, this conclusion is
supported by our results found for the collective mode spectrum (see figure 5 in paper I) as
well as our calculations of the normalized amplitudes for separate mode contributions, shown
in figure 5 of the present paper. For instance, at k � 0.58 Å−1 one gets σ1/ω1 � 0.3, but
Ā2
nn/B̄

1
nn � 1.1 and d2/σ1 � 1.4. This means that at k � 0.58 Å−1 the sound modes are still

well defined (σ1/ω1 � 0.3 < 1); however, they could be visible in the dynamical structure
factor only as shoulders and not as well-separated side peaks.

In conclusion, the main results of this study are the following:

(i) Two relaxing collective modes d1(k) and d2(k), in addition to the propagating excitations,
make the main contributions to the shape of the ‘density–density’ TCFs of liquid Bi. As
was expected from the standard hydrodynamic treatment, for small wavenumbers k the
contribution from the thermodiffusive mode d1(k) is dominant. However, for larger k
(k > 0.6 Å−1) another relaxing mode, d2(k), mainly determines the relaxing properties of
the density–density TCFFnn(k, t). In this region the mode d2(k) has the smallest damping
coefficient and contributes to Fnn(k, t) with the largest amplitude.

(ii) The relaxing kinetic mode d2(k), which is irrelevant in the hydrodynamic region, makes
the most significant contribution to the zero-order frequency moment of the dynamical
structure factor in the range where the main peak of the static structure factor S(k) is
located. A relatively small (six times smaller in magnitude) and negative contribution of
generalized sound excitations is also found in this range of k.

(iii) The kinetic relaxing collective mode d2(k) is closely connected by its origin with the
structural relaxation in a liquid. In the region of the main peak of S(k) the eigenvalue
d2(k) can be used as an estimate of the average inverse lifetime of a particle in a cage of
nearest neighbours. For intermediate values of k (k ∼ 0.6 Å−1), this mode causes the
appearance of a Mountain-like peak in the dynamical structure factor.

(iv) The method used for the study of dynamical properties of liquid Bi allows us without any
additional assumptions or adjustable parameters to describe correctly the crossover from
purely hydrodynamic (or purely viscous) behaviour to the purely elastic response of the
system and to explain the specific features of de Gennes narrowing at k ∼ Qp, where the
main maximum of S(k) is located.
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As regards the future outlook, we might mention that the present work provides an example
of how within a rigorous statistical treatment the problem of collective excitations in liquids
can be understood on a microscopic level. Therefore we are interested in applying the method
developed here in investigations of other liquids, the collective dynamics of which cannot
be solely understood in terms of the hydrodynamic modes (see, e.g., [23]). A more specific
problem is connected with the study of highly viscous and supercooled liquids, where one can
expect to observe even for small wavenumbers a significant contribution from the generalized
structural relaxation mode to the dynamical structure factor.
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